Caractéristiques des transformateurs de mesure

Rct

Kx

Ek

Kr

L	égende	
Classe de précision	cl	Résistance de l'enroulement secondaire
Courant primaire nominal	Ipn	Facteur de dimensionnement
Courant secondaire nominal	Isn	Charge secondaire
Puissance nominale	Sr	Tension de coude
Courant thermique nominal	Ith	Facteur de rémanence
Courant dynamique nominal	Idyn	Tension la plus élevée pour le matériel

émanence ≈ 0%

Tension d'essai à fréquence industrielle (x) si U >= 300 kV Tension d'essai de choc Tension primaire nominale Upn

Usn

FctU

Tension secondaire nominale

Facteur de tension

				Trans	forma	teur de courant ou	d'intensité	(TI)											
		Informations généra	ales			Informations présentes sur la plaquette signalétique													
Catégorie	Dimensionnement	Caractéristiques	Туре	Applications		Classes	lpn	Isn	Sr (valeurs standards)	Ek	Rct	Ith	Idyn	Um	Up	UBIL	Kr	Limites d'erreurs selon norme IEC 61869-2	
categorie	Dimensionnement	constructives	Турс	Applications		[-]	[A]	[A]	[VA]		[Ω]	[kA] (1s) [x Ith		[kV]	[kV]	[kV]		Hornie IEC 01003-2	
	Les TI pour la mesure sont construits pour qu'ils transmettent une image secondaire fidèle au signal primaire jusqu'à 120% du courant nominal. Au-delà, le TI			Applications de mesure normales. La précision est garantie à partir d'une charge de 5% de la charge nominale	0.	.1 - 0.2 - 0.5 - 1 - 3 - 5	х	1 - 5	2.5 - 5 - 10 - 15 - 30			х	х	х	Х	(X)		Table 200.1 & 200.3	
Mesure	sature et protège donc les équipements de mesure connectés. Pour ces TI, aucun surdimensionnement n'est nécessaire.			Applications de mesure spéciales. La précision est garantie à partir d'une charge de 1% de la charge nominale		0.2 S - 0.5 S	х	1-5	2.5 - 5 - 10 - 15 - 30			х	х	х	х	(X)		Tables 200.2	
	Les TI pour la protection doivent être capables de transmettre un courant secondaire possédant une image la	80%	P ou TPX	TI pour les applications de protection courantes	5P 10P	5 - 10 - 15 - 20 - 30	х	1-5	2.5 - 5 - 10 - 15 - 30			х	х	х	х	(X)	Typ. < 80%	Table 200.4	
	plus fidèle possible du courant primaire, et ce également pendant un court-circuit. Le TI ne devrait donc pas saturer pour le courant de court-circuit maximum, y.c. avec sa composante apériodique, ce qui implique un	TI sans entrefer, à faible	PX ou TPS (classe X)	TI utilisés par exemple pour la protection différentielle à haute impédance, pour laquelle tous les secondaires sont connectés en parallèle			х	1-5		х	х	х	х	х	х	(X)	Тур.	Erreur rapport nbr spires prim/sec <= 0.25%. Ek: Tension pour laquelle 100% d'augmentation de courant magnétisant résulte dans 10% d'augmentation de tension	
	surdimensionnement du TI. Cependant, les fabriquants d'IEDs recourent de nos jours à des algorythmes qui autorisent "un peu" de saturation, ce qui permet de réduire le surdimensionnement du TI. A noter que le	TI avec entrefer, à faible rémanence < 10%	PR ou TPY	TI devant être utilisés de préférence dans le cas de ligne aérienne, où la fonction de réenclenchement est activée. Utilisé auparavant avec les protections de distance ou différentielles statiques	5PR 10PR	5 - 10 - 15 - 20 - 30	х	1 - 5	2.5 - 5 - 10 - 15 - 30			х	х	х	х	(X)	< 10%	Table 200.5	
	surdimensionnement nécessaire dépend du type d'IED et de la fonction de protection.	TI avec un grand entrefer,	PR OU TP7	TI notamment utilisés pour les alternateurs de grande puissance,	5PR	5 - 10 - 15 - 20 - 30	x	1-5	25-5-10-15-30			x	x	x	x	(X)	≈ 0%	Table 200 5	

5 - 10 - 15 - 20 - 30

Table 200.1 – Limits of current error and phase displacement for measuring current transformers (classes from 0.1 to 1)

	at perce		rated		± Pha			t at perc it shown			
					Min	utes			Centir	adians	
5	20	100	120	5	20	100	120	5	20	100	120
0,4	0,2	0,1	0,1	15	8	5	5	0,45	0,24	0,15	0,15
0,75	0,35	0,2	0,2	30	15	10	10	0,9	0,45	0,3	0,3
1,5	0,75	0,5	0,5	90	45	30	30	2,7	1,35	0,9	0,9
3,0	1,5	1,0	1,0	180	90	60	60	5,4	2,7	1,8	1,8
	5 0,4 0,75 1,5	5 20 0,4 0,2 0,75 0,35 1,5 0,75	5 20 100 0,4 0,2 0,1 0,75 0,35 0,2 1,5 0,75 0,5	5 20 100 120 0.4 0.2 0.1 0.1 0,75 0.35 0.2 0.2 1,5 0,75 0.5 0.5	5 20 100 120 5 0.4 0.2 0.1 0.1 15 0.75 0.35 0.2 0.2 0.3 1.5 0.75 0.5 0.5 90	current shown below Min 5 20 100 120 5 20 0.4 0.2 0.1 0.1 15 8 0.75 0.35 0.2 0.2 30 15 1.5 0.75 0.5 0.5 90 45	current shown below Minutes 5 20 100 120 5 20 100 0.4 0.2 0.1 0.1 15 8 5 0.75 0.35 0.2 0.2 30 15 10 1.5 0.75 0.5 0.5 90 45 30	current shown below Minutes 5 20 100 120 5 20 100 120 0.4 0.2 0.1 0.1 15 8 5 5 0.75 0.35 0.2 0.2 30 15 10 10 1.5 0.75 0.5 0.5 90 45 30 30	current shown below Minutes 5 20 100 120 5 20 100 120 5 0.4 0.2 0.1 0.1 15 8 5 5 0.45 0.75 0.35 0.2 0.2 30 15 10 10 0.9 1.5 0.75 0.5 0.5 90 45 30 30 2.7	current shown below Minutes Centir 5 20 100 120 5 20 100 120 5 20 0.4 0.2 0.1 0.1 15 8 5 5 0.45 0.24 0.75 0.35 0.2 0.2 30 15 10 10 0.9 0.45 1.5 0.75 0.5 0.5 90 45 30 30 2.7 1,35	current shown below Minutes Centiradians 5 20 100 120 5 20 100 120 5 20 100 0.4 0.2 0.1 0.1 15 8 5 5 0.45 0.24 0.15 0.75 0.35 0.2 0.2 30 15 10 10 0.9 0.45 0.3 1.5 0.75 0.5 0.5 90 45 30 30 2.7 1,35 0.9

Table 200.3 – Limits of current error for measuring current transformers (classes 3 and 5)

Class		tio) error at percentage of t shown below
	50	120
3	3	3
5	5	5

Table 200.2 – Limits of current error and phase displacement for measuring current transformers for special application

otamment pour la protection différentielle

Accuracy class	erro	rcenta r at per urrent	rcenta	ge of	rated		± P					ercenta wn bel			
								Minute	s	- 1		Cei	ntiradi	ans	
	1	5	20	100	120	1	5	20	100	120	1	5	20	100	120
0.2 S	0,75	0,35	0,2	0,2	0,2	30	15	10	10	10	0,9	0,45	0,3	0,3	0,3
0.5 S	1,5	0,75	0,5	0,5	0,5	90	45	30	30	30	2,7	1,35	0,9	0,9	0,9

Table 200.4 - Limits of error for protective current transformers

1 - 5

2.5 - 5 - 10 - 15 - 30

Accuracy class	Current error at rated primary current %		placement at nary current	Composite error at rated accuracy limit primary current %
		minutes	centiradians	8
5P	±1	±60	±1,8	5
10P	±3	-	222	10

Table 200.5 - Limits of error for class PR protective current transformers

Accuracy class	Current error at rated primary	Phase disp rated prin	Composite error at rated accuracy limit	
	current %	Minutes	Centiradians	primary current %
5 PR	±1	±60	±1,8	5
10 PR	±3	-	-	10

Table 1 - Limits of error

Table 200.5

(X)

≈ 0%

	At rate	ed primary current		At accuracy limit condition
Class	Ratio	Phase dis	placement	Maximum peak
88	%	Min	Centirad	%
TPX	±0,5	±30	±0,9	ε̂ = 10
TPY	±1,0	±60	±1,8	ε̂ = 10
TPZ	±1,0	180 ± 18	5,3 ± 0,6	$\hat{\epsilon}_{ac} = 10$

NOTE - For some applications, deviation from the above values may be necessary (refer also to annex D.3). Similarly, the absolute value of the phase displacement may in some cases be of less importance than achieving minimal deviation from the average value of a given production series.

				Transf	ormateur de tension ou d	de potentiel	(TP)							
			Informations présentes sur la plaquette signalétique											
Catégorie		Caractéristiques	Туре	Applications	Classes	Upn	Usn	Sr	FctU		Um	Up	UBIL	Limites d'erreurs selon norme IEC 61869-3
		constructives	,,		[-]	[A]	[A]	[VA]	[-]		[kV]	[kV]	[kV]	
Mesure	Le dimensionnement s'effectue en fonction de la charge connectée.			Applications de mesure normales. La précision est garantie pour une tension comprise entre 80 et 120% de Upn et une charge comprise entre 25 et 100% (cos Phi 0.8) de Rb	0.1 - 0.2 - 0.5 - 1 - 3	Х	100, 100/V3, 100/3 110, 110/V3, 110/3 200, 200/V3, 200/3	10 - 15 - 25 - 30 - 50 500	Table 4		Х	х	(X)	Table 1
Protection	Le dimensionnement s'effectue en fonction de la charge connectée.			Applications liées à la protection. La précision est garantie pour des tensions de 5% et de FctU de Upn et une charge comprise entre 25 et 100% (cos Phi 0.8) de Rb	3P 6P	Х	100, 100/V3, 100/3 110, 110/V3, 110/3 200, 200/V3, 200/3	10 - 15 - 25 - 30 - 50 500	Table 4		х	х	(X)	Table 2

Table 1 - Limits of voltage error and phase displacement for measuring voltage transformers

Class	Percentage voltage	Phase di	splacement ±
Class	(ratio) error ±	Minutes	Centiradians
0,1	0,1	5	0,15
0,2	0,2	10	0,3
0,5	0,5	20	0,6
1,0	1,0	40	1,2
3,0	3,0	Not specified	Not specified

NOTE When ordering transformers having two separate secondary windings, because of their interdependence, the user should specify two output ranges, one for each winding, the upper limit of each output range corresponding to a standard rated output value. Each winding should fulfill its respective accuracy requirements within its output range, whilst at the same time the other winding has an output of any value from zero up to 100 % of the upper limit of the output range specified for the other winding. In proving compliance with this requirement, it is sufficient to test at extreme values only. If no specification of output ranges is supplied, these ranges are deemed to be from 25 % to 100 % of the rated output for each winding. output for each winding.

If one of the windings is loaded only occasionally for short periods or only used as a residual voltage winding, its effect upon other windings may be neglected.

Table 2 – Limits of voltage error and phase displacement for protective voltage transformers

Class	Percentage voltage	Phase disp	lacement + or -
Class	(ratio) error + or -	Minutes	Centiradians
3P	3.0	120	3,5
6P	6,0	240	7.0

NOTE When ordering transformers having two separate secondary windings, because of their interdependence, the user should specify two output ranges, one for each winding, the upper limit of each output range corresponding to a standard rated output value. Each winding should fulfill its respective accuracy requirements within its output range, whilst at the same time the other winding has an output of any value from zero up to 100 % of the upper limit of its output range. In proving compliance with this requirement, it is sufficient to test at extreme values only. If no specification of output ranges is supplied, these ranges are deemed to be from 25 % to 100 % of the rated output for each winding

Table 4 - Standard values of rated voltage factors

Rated voltage factor	Rated time	Method of connecting the primary winding and system earthing conditions
1,2	Continuous	Between phases in any network Between transformer star-point and earth in any network
1,2	Continuous	Between phase and earth in an effectively earthed neutral system (IEC 61869-1, clause 3.3.7a))
1,5	30 s	
1,2	Continuous	Between phase and earth in a non-effectively earthed neutral system (IEC
1,9	30 s	61869-1, clause 3.3.7b)) with automatic earth-fault tripping
1,2	Continuous	Between phase and earth in an isolated neutral system (IEC 61869-1, clause 3.3.4)
1,9	8 h	without automatic earth-fault tripping or in a resonant earthed system (IEC 61869-1, clause 3.3.5) without automatic earth-fault tripping

NOTE 1 The highest continuous operating voltage of an inductive voltage transformer is equal to the highest voltage for equipment (divided by v3 for transformers connected between a phase of a three-phase system and earth) or the rated primary voltage multiplied by the factor 1,2, whichever is the lowest. NOTE 2 Reduced rated times are permissible by agreement between manufacturer and user.